∫x2x4−x2−12dx
=∫x2x4−4x2+3x2−12dx
=∫x2(x2−4)(x2+3)dx
Substituting x2=t for partial fraction
∴x2(x2−4)(x2+3)=t(t−4)(t+3)
Let t(t−4)(t+3)=A(t−4)+B(t+3)
⇒t=A(t+3)+B(t−4)
Substituting t=−3,
−3=B(−3−4)⇒B=37
Substituting t=4,
4=A(4+3)⇒A=4/7
So, t(t−4)(t+3)=17[4(t−4)+3(t+3)]
∴∫x2(x2−4)(x2+3))dx
=17∫[4(x2−4)+3(x2+3)]dx
=17[4∫1x2−22dx+3∫1x2+(√3)2dx]
=17[44log∣∣∣x−2x+2∣∣∣+3√3tan−1(x√3)]+c
[∵∫dx(x2−a2)=12alog∣∣∣x−ax+a∣∣∣+c,∫1(x2+a2)dx=1atan−1(xa)+c]
=17log∣∣∣x−2x+2∣∣∣+√37tan−1(x√3)+c
Where c is constant of integration
Hence, the integration is
17log∣∣∣x−2x+2∣∣∣+√37tan−1(x√3)+c