The correct option is D ex(x+1)2+C
Let I=∫(x−1)ex(x+1)3dx
⇒I=∫{x+1−2(x+1)3}exdx
=∫{1(x+1)2−2(x+1)3}exdx
=∫ex⋅1(x+1)2dx−2∫ex1(x+1)3dx
Applying integrating by parts, we get
=(1(x+1)2ex−∫ex(−2)(x+1)3dx)−2∫ex1(x+1)3dx
=ex(x+1)2+C
Note We can use the formula
∫ex[f(x)+f′(x)]dx=exf(x)+C.