∫x+1x2+3x+12dx
=12∫2(x+1)x2+3x+12dx
=12∫2x+2+1−1x2+3x+12dx
⇒∫x+1x2+3x+12dx=12⎡⎢
⎢⎣∫2x+3x2+3x+12dx(u)−∫1x2+3x+12(v)⎤⎥
⎥⎦.....(1)
Solving for u and v, we have
u=∫2x+3x2+3x+12dx
Let x2+3+12=t⇒(2x+3)dx=dt
∴u=∫dtt=logt+C
Substituting the value of t, we get
u=log(x2+3x+12)+C1
Now,
v=∫1x2+3x+12dx
⇒v=∫1(x+32)2−94+12dx=∫1(x+32)2+(√392)2dx
∴v=2√39tan−1⎛⎜
⎜
⎜
⎜⎝x+32√392⎞⎟
⎟
⎟
⎟⎠
⇒v=2√39tan−1(2x+3√39)+C2
Substituting the value of x in equation (1), we have
⇒∫x+1x2+3x+12dx =12[log(x2+3x+12)−2√39tan−1(2x+3√39)+C1−c2]=12log(x2+3x+12)−1√39tan−1(2x+3√39)+C