wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: x3sin1x21x4dx

Open in App
Solution

So, x2.xsin1(x2)1(x2)2dx
=122msin1m.(dm)
⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢Letx2=mdm=2xdxandddx(sin1m)dm=11x2⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥
=12[12m2sin1m(m221sin2)dx] By integration by parts
12sin2udx Let m=sin(u)
1cos2u2dv
14[1.dvcos2udv]
14(u12sin2u)

On back Substituting :
14[sin1(m)12sin(2sin1m)]
2[12m2sin1(m)14(sin1m12sin(2sin1(m)))]
m2sin1(m)12sin1(m)+12sin(2sin1(m)+c)
as (m=x2)
So value of integer is :-
(x2)2sin1(x2)12sin1(x2)+12sin(2sin1(x2))+c
{x4.sin1(x2)12sin1(x2)(2sin1(x2))+e}

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 5
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon