∫(xx4−1)Sol.:
xx4−1=x(x−1)(x+1)(x2+1)
we can solve it as:-
Ax+Bx2+1+Cx+1+Dx−1+(Ax+B)(x2−1)+C(x2+1)(x−1)+D(x2+1)(x+1)(x−1)(x+1)(x2+1)
=Ax3+Bx2−Ax−B+Cx3−Cx2+Cx−C+Dx3+Dx2+Dx+Dx4−1
=x3(A+C+D)+x2(B−C+D)+x(−A+C+D)+(−B−C+D)(x4−1)
From comparing the equation with \
xx4−1;
we get
A+C+D=0
B−C+D=0
−A+C+D=1
&(−B−C+D)=0
⇒A=−12,B=0,C=D=14
∫(xx4−1)dx=∫((12)(xx2+1))dx+∫((14)(1x+1+1x−1))dx
=14(ln(∣∣(x2+1)∣∣))+14(ln(∣∣(x2−1)∣∣))+C
=14(ln(∣∣(x4−1)∣∣))+C
Hence, correct answer is
14(ln(∣∣(x4−1)∣∣))+C