wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate xx41dx

Open in App
Solution

Given :
(xx41)
Sol.:
xx41=x(x1)(x+1)(x2+1)
we can solve it as:-
Ax+Bx2+1+Cx+1+Dx1+(Ax+B)(x21)+C(x2+1)(x1)+D(x2+1)(x+1)(x1)(x+1)(x2+1)
=Ax3+Bx2AxB+Cx3Cx2+CxC+Dx3+Dx2+Dx+Dx41
=x3(A+C+D)+x2(BC+D)+x(A+C+D)+(BC+D)(x41)
From comparing the equation with \
xx41;
we get
A+C+D=0
BC+D=0
A+C+D=1
&(BC+D)=0
A=12,B=0,C=D=14
(xx41)dx=((12)(xx2+1))dx+((14)(1x+1+1x1))dx
=14(ln((x2+1)))+14(ln((x21)))+C
=14(ln((x41)))+C
Hence, correct answer is
14(ln((x41)))+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Improper Integrals
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon