The correct option is B 1213x−513ln|3cosx+2sinx|dx
Let I=∫3sinx+2cosx2sinx+3cosxdx
Multiply numerator and denominator by sec3x
I=∫2sec2x+3tanxsec2x3sec2x+2tanxsec2xdx=∫(3tanx+2)sec2x(2tanx+3)(tan2x+1)dx
Put tanx=t⇒sec2xdx=dt
I=∫3t+2(2t+3)(t2+1)dt=∫(5t+1213(t2+1)−1013(2t+3))dt
=113∫(5tt2+1+12t2+1)dt−1013∫12t+3dt
=1213tan−1t+513log(t2+1)−513log(2t+3)
=1213x−513log(2sinx+3cosx)