The correct option is A −12ln(x2+1x2)+c
Given, ∫dxx(x2+1)
Resolving 1x(x2+1) into partial fractions
1x(x2+1)=Ax+Bx+C(x2+1) ....(1)
1=(A+B)x2+
1=(A+B)x2+Cx+A
On comparing, we get
A=1,C=0,B=−1
Put these values in (1), we get
1x(x2+1)=1x+−x(x2+1)
Integrating both sides, we get
∫dxx(x2+1)=∫dxx−∫xdx(x2+1)
⇒∫dxx(x2+1)=logx−12log|1+x2|+c
∫dxx(x2+1)=−12log(x2+1x2)+c