Evaluate: ∫1cos4x+sin4xdx.
Let I=∫1cos4x+sin4xdx.
Dividing Nr and Dr by cos4x, we get:
I=∫sec4x1+tan4xdx=∫(1+tan2x)sec2x1+tan4xdx [Put tan x=t⇒sec2xdx=dt
⇒∫(1+t2)1+t4dt ⇒I=∫1t2+11t2+t2dt [Dividing Nr & Dr by t2
Now, put −1t+t=v⇒(1t2+1)dt=dv. Also (−1t+t)2=v2⇒1t2+t2=v2+2
∴I=∫1v2+(√2)2dv=1√2tan−1(v√2)+C
So, I=1√2tan−1(t2−1√2t)+C ⇒I=1√2tan−1(tan2x−1√2tan x)+C.