∫1sin4x+cos4xdx
Dividing numerator and denominator by cos4x, we have
=∫(1cos4x)(sin4xcos4x)+(cos4xcos4x)dx
=∫sec4x1+tan4xdx
=∫sec2x(1+tan2x)1+tan4xdx
Let
tanx=u
⇒sec2xdx=du
∴=∫1+u21+u4du
⇒=∫1+1u2u2+1u2du
Now again,
Let
u−1u=t
⇒(1+1u2)du=dt
∴=∫dtt2+(√2)2
⇒=1√2tan−1(t√2)+C
⇒=1√2tan−1⎛⎜
⎜
⎜⎝(u−1u)√2⎞⎟
⎟
⎟⎠+C[∵t=u−1u]
⇒=1√2tan−1⎛⎜
⎜
⎜⎝tanx−1tanx√2⎞⎟
⎟
⎟⎠+C[∵u=tanx]
⇒=1√2tan−1(tan2x−1√2tanx)+C
Hence ∫1sin4x+cos4xdx=1√2tan−1(tan2x−1√2tanx)+C