wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate 1sin4x+cos4xdx

Open in App
Solution

1sin4x+cos4xdx
Dividing numerator and denominator by cos4x, we have
=(1cos4x)(sin4xcos4x)+(cos4xcos4x)dx
=sec4x1+tan4xdx
=sec2x(1+tan2x)1+tan4xdx
Let
tanx=u
sec2xdx=du
=1+u21+u4du
=1+1u2u2+1u2du
=1+1u2(u1u)2+2du
Now again,
Let
u1u=t
(1+1u2)du=dt
=dtt2+(2)2
=12tan1(t2)+C
=12tan1⎜ ⎜ ⎜(u1u)2⎟ ⎟ ⎟+C[t=u1u]
=12tan1⎜ ⎜ ⎜tanx1tanx2⎟ ⎟ ⎟+C[u=tanx]
=12tan1(tan2x12tanx)+C
Hence 1sin4x+cos4xdx=12tan1(tan2x12tanx)+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Pythagorean Identities
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon