wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate : 1sinxsin2xdx

Open in App
Solution

I=1sinxsin2xdx

I=1sinx2sinxcosxdx

I=1sinx(12cosx)dx

I=sinxsin2x(12cosx)dx

I=sinx(1cos2x)(12cosx)dx

Let cosx=t
sinxdx=dt
sinxdx=dt

I=dt(1t2)(12t)

I=dt(1t)(1+t)(12t)

I=1(t1)(t+1)(12t)dt

Now,
1(t1)(t+1)(12t)=At+1+Bt1+C12t

Solving this, we get,
A=16,B=12,C=43
Therefore,
I=At+1dt+Bt1dt+C12tdt

I=Alog(t+1)+Blog(t1)C2log(12t)+C

I=16log(cosx+1)12log(cosx1)+46log(12cosx)+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration as Anti-Derivative
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon