∫1-2121-x1+x2+1+x1-x2-2dx
Step 1. Integrate the given equation:
=∫1-2121-x1+x-1+x1-x2dx ∵a2+b2-2ab=(a-b)2
=2∫0121-x1+x-1+x1-x2dx
=2∫0121+x2-2x-1-x2-2x1-x2dx
=2∫012-4x1-x2dx ……(1)
Let 1-x2=t
Step 2. Differentiate it with respect to x
⇒-2xdx=dt
⇒ dx=dt-2x
Step 3. Put the value of dx and 1-x2 in equation (1), we get
⇒4∫112dtt
⇒4logt112 ∵∫1xdx=logx
⇒4log12-log1
⇒4log12 ∵logA-logB=logAB
Hence, the integration of given equation is 4log12
From the following place value table, write the decimal number:-
From the given place value table, write the decimal number.