Consider the given function:
I=∫e2xe4x−e2x+2dx
lete2x=t
2e2xdx=dt
thenI=∫e2xe4x−e2x+2dx
=12∫1t2−t+2dt
=12∫1t2−t+(12)2−(12)2+2dt
=12∫1(t−12)2+74dt
=12∫1(t−12)2+(√72)2dt
=12.1√72tan−1(t−12√72)
=1√7tan−1(2t−1√7)
=1√7tan−1(2e2x−1√7)
Hence this is the answer.