Let I=∫π20sin2xsinx+cosxdx ... (i)
∴I=∫π20sin2(π2−x)sin(π2−x)+cos(π2−x)dx
[∵∫a0f(x)dx=∫a0f(a−x)dx]
⇒I=∫π20cos2xcosx+sinxdx ... (ii)
Adding (i) and (ii), we get
2I=∫π20sin2x+cos2xsinx+cosxdx
=∫π201sinx+cosxdx
=1√2 ∫π/20dxcosx.1√2+sinx.1√2
=1√2 ∫π/20dxcos(x−π4)
=1√2∫π/20sec(x−π4)dx
=1√2[log∣∣sec(x−π4)+tan(x−π4)∣∣]π/20
=1√2[log∣∣secπ4+tanπ4∣∣−log∣∣sec(−π4)+tan(−π4)∣∣]
=1√2[log∣∣√2+1∣∣−log∣∣√2−1∣∣]
=1√2[log(√2+1√2−1×√2+1√2+1)]
=1√2log(√2+1)22−1=1√2log(√2+1)21
=√2log(√2+1)
Hence, I=√2log(√2+1)