wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate : π20sin2xsinx+cosxdx

Open in App
Solution

Let I=π20sin2xsinx+cosxdx ... (i)

I=π20sin2(π2x)sin(π2x)+cos(π2x)dx

[a0f(x)dx=a0f(ax)dx]

I=π20cos2xcosx+sinxdx ... (ii)

Adding (i) and (ii), we get

2I=π20sin2x+cos2xsinx+cosxdx

=π201sinx+cosxdx

=12 π/20dxcosx.12+sinx.12

=12 π/20dxcos(xπ4)

=12π/20sec(xπ4)dx

=12[logsec(xπ4)+tan(xπ4)]π/20

=12[logsecπ4+tanπ4logsec(π4)+tan(π4)]

=12[log2+1log21]

=12[log(2+121×2+12+1)]

=12log(2+1)221=12log(2+1)21

=2log(2+1)

Hence, I=2log(2+1)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon