wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate π4π4x+π42cos 2xdx.

Open in App
Solution

π4π4x+π42cos 2xdx=π4π4x2cos 2xdx+π4π4π412cos 2xdx.
Consider f(x)=x2cos 2x f(x)=x2cos 2(x)=x2cos 2x=f(x)
And, g(x)=12cos 2x g(x)=12cos 2(x)=12cos 2x=g(x).
Clearly f(x) and g(x) are respectively odd and even functions.
By using aaf(x)dx={0,if f(x) is odd2a0f(x)dx,if f(x) is even, we get :
I=0+π4×π4012cos 2xdx=π2π40121tan2x1+tan2xdx=π2π40sec2x3 tan2x+1
Put tan x=tsec2xdx=dt.
When x=0t=0,when x=π4t=1.
So, I=π21013t2+1dt=π2×13[tan1(3t)]10=π23[tan130]=π263.

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration by Partial Fractions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon