∫π4−π4x+π42−cos 2xdx=∫π4−π4x2−cos 2xdx+π4∫π4−π412−cos 2xdx.
Consider f(x)=x2−cos 2x ⇒f(−x)=−x2−cos 2(−x)=−x2−cos 2x=−f(x)
And, g(x)=12−cos 2x ⇒g(−x)=12−cos 2(−x)=12−cos 2x=g(x).
Clearly f(x) and g(x) are respectively odd and even functions.
By using ∫a−af(x)dx={0,if f(x) is odd2∫a0f(x)dx,if f(x) is even, we get :
I=0+π4×∫π4012−cos 2xdx=π2∫π4012−1−tan2x1+tan2xdx=π2∫π40sec2x3 tan2x+1
Put tan x=t⇒sec2xdx=dt.
When x=0⇒t=0,when x=π4⇒t=1.
So, I=π2∫1013t2+1dt=π2×1√3[tan−1(√3t)]10=π2√3[tan−1√3−0]=π26√3.