wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: tanθ+ tan3θ1+ tan3θdθ

Open in App
Solution

tanθ+tan3θ1+tan3θdθ=tanθ(1+tan3θ)1+tan3θdθ
Assuming tanθ=x
sec2θdθ=dx
So, xdx1+x3
x1+x3dx=1dx3(x+1)+13(x+1).dxx2x+1 =13⎢ ⎢ ⎢2x1x2x+1dx+32dxx2x+1⎥ ⎥ ⎥
=13⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢12log(x2x+1)+32dx(x12)2+(32)2⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ [ we know: dxx2+a2=tan1(xa)
=13⎢ ⎢ ⎢ ⎢ ⎢ ⎢12log(x2x+1)+3.223tan1(x12)(32)⎥ ⎥ ⎥ ⎥ ⎥ ⎥=16log(x2x+1)+3tan1(x12)(32)
&
tan13dxx+1=log(x+1)+C
Partial fraction method
x1+x3=Ax+1+Bx+Cx2x+1
x1+x3=A(x2x+1)+(Bx+C)(x+1)(x+1)(x2x+1)
A+B=0,A+C=0
C+BA=1
A=13,B=C=13

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon