∫xx4−1dx
=12∫2x(x2)2−1dx
Substituting x2=t⇒2xdx=dt
=12∫2x(x2)2−1dx=12∫1t2−1dt
=12[12log∣∣∣t−1t+1∣∣∣]+c
[∵∫dxx2−a2=12alog∣∣∣x−ax+a∣∣∣+c]
=14log∣∣∣x2−1x2+1∣∣∣+c [∵x2=t]
Where, c is constant of integration.
Hence, the required integration is 14log∣∣∣x2−1x2+1∣∣∣+c