Let I=∫(√cot x+√tan x)dx,
=∫(t+1t)2t1+t4dt Put [√tan x=t,tan x=t2
sec2xdx=2tdt
⇒(1+t4)dx=2tdt
⇒dx=2t1+t4dt]
=2∫t2+1t4+1dt
[Divide numerator and denominator by t2]
=2∫1+1t2t2+1t2dt
[Put t−1t=u,t2+1t2−2=u2 (1+1t2)dt=du]
=2∫du2+u2=2√2tan−1u√2
=2√2 tan−1(t−1t√2)=2√2 tan−1(tan x−1√2√tan x)+c