We have,
I=π/2∫0cosxdx(cosx+sinx) .........(1)
We know that
a∫bf(x)dx=a∫b f(a+b−x)dx
Therefore,
I=π/2∫0sinxdx(sinx+cosx) ............(2)
On adding equations (1) and (2), we get
2I=π/2∫0sinx+cosx(sinx+cosx)dx
2I=π/2∫01dx
2I=[x]π20
2I=π2−0
2I=π2
I=π4
Hence, this is the answer.