wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: π0cos(2x).logsinxdx

Open in App
Solution

Solution : -
I=π0cos2x.logsinxdx

consider logsinx=I cos2x=II

then I=logsinxcos2xdxddx(logsinx).cos2xdx

=log.sin.xsin2x2cosxsinx×sin2x2dx

=logsinx.sin2x222cos2xdx

=12logsinx.sin2x12(cos2x+1)dx

=[12sinx.sin2x12[sin2x2+x]]π0

=π2

1114368_1204063_ans_0bac97826385435ca4484e0299e4343f.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon