Consider ∫sin2x0sin−1√tdt
Let t=sin2θ⇒dt=2sinθcosθdθ=sin2θdθ
When t=0⇒θ=0
When t=sin2x⇒sin2θ=sin2x⇒θ=x
∴∫sin2x0sin−1√tdt
=∫x0sin−1√sin2θsin2θdθ
=∫x0sin−1sinθsin2θdθ
=∫x0θsin2θdθ ...........(1)
Consider ∫cos2x0cos−1√tdt
Let t=cos2θ⇒dt=−2sinθcosθdθ=−sin2θdθ
When t=0⇒θ=π2
When t=cos2x⇒cos2θ=cos2x⇒θ=x
∴∫xπ2cos−1√tdt
=−∫xπ2cos−1√cos2θsin2θdθ
=−∫xπ2cos−1cosθsin2θdθ
=−∫xπ2θsin2θdθ
=∫π2xθsin2θdθ ...........(2)
Using ∫baf(x)dx+∫cbf(x)dx=∫caf(x)dx we add (1) and (2)
∫x0θsin2θdθ+∫π2xθsin2θdθ
=∫π20θsin2θdθ
Let u=θ⇒du=dθ
dv=sin2θ⇒v=−cos2θ2
=[−θcos2θ2]π20−∫−cos2θ2dθ
=[π4−0]−∫π20−cos2θ2dθ
=π4+14[sin2θ]π20
=π4+14[0−0]π20
=π4