Let I=∫π/40sin x+cos x16+9sin 2xdx
Putting sin x−cos x=t⇒(cos x+sin x) dx=dt
And sin2 x+cos2 x−2 sin x cos x=t2
⇒sin2x=1−t2
When x=0, t=−1 and when x=π4, t=0
I = ∫0−1dt16+9(1−t2)=∫0−1dt16+9−9t2
= ∫0−1dt25−9t2
= 19∫0−1dt(53)2−t2=19×12×53×[log∣∣∣53+t53−t∣∣∣]0−1
= 130[log∣∣5+3t5−3t∣∣]0−1=130[log 1−log 14]
= 130[log 1−log 1+log 4]
= 130 log 4=115log2