I=∫sin−12x1+x2dx
Put x=tant
Then, sin−12x1+x2=sin−12tant1+tan2t
=sin−1sin2t
=2t
Thus, our function becomes
I=2∫tan−1xdx
I=2tan−1x∫1.dx−2∫(d(tan−1x)dx∫1.dx)dx
I=2xtan−1x−2∫11+x2xdx
Let I1=∫x1+x2dx
Let 1+x2=t
dx=dt2x
Therefore,
I1=∫xt.dt2x
I1=12∫dtt
I1=12logt
I1=12log(1+x2)
Hence,
I=2xtan−1x−log(1+x2)+C