I=∫sin4x.cos4x.dx
We know that
sin2x=1−cos2x2, cos2x=1+cos2x2
∫(1−cos2x2)2.(1+cos2x2)2dx
=116∫(1−cos22x)2dx
=116∫(1+cos42x−2cos22x)dx
=116∫1+(1+cos4x)24−2(1+cos4x2)dx
=116∫1+1+cos24x+2cos4x2−1−cos4x dx
=116∫1+1+cos8x2+2cos4x−2cos4x2dx
=132∫1+1+cos8x2dx
=164∫3+cos8x dx
=164[3x+sin8x8]+c