The correct option is
A sin(4x)−8sin(2x)+12x32+c∫sin4xdx=∫(sin2x)2dx=∫(1−cos2x2)2dx
=∫(1+cos22x−2cos2x4)dx
=14∫(1+1+cos4x2−2cos2x)dx
=18∫(2+1+cos4x−4cos2x)dx
=18∫(3+cos4x−4cos2x)dx
=18[3x+sin4x4−4sin2x2]+c
=3x8+sin4x32−sin2x4+c
=sin4x−8sin2x+12x32+c
Option C is correct.