∫sin7xdx
=∫sin6xsinxdx
=∫(1−cos2x)3sinxdx
=∫(1−cos6x−3cos2x+3cos4x)sinxdx
=∫sinxdx−∫cos6xsinxdx−3∫cos2xsinxdx+3∫cos4xsinxdx
Let t=cosx⇒dt=−sinxdx
=−cosx+∫t6dt+3∫t2dt−3∫t4dt
=−cosx+t77+3t33−3t55+c
=−cosx+cos7x7+3cos3x3−3cos5x5+c
=−cosx+cos7x7+cos3x−3cos5x5+c
=cos7x7−3cos5x5+cos3x−cosx+c