Evaluate ∫√1+y2.2ydy
None of these
Let I=∫√1+y2.2ydy
Let u=1+y2, then du=2ydy
I=∫u1/2du=u(1/2)+1(1/2)+1Integrate, using rule no. 3 with n=12
= 23u3/2+C
Simpler form= 23(1+y2)3/2+c (Replace u by 1+y2)
Evaluate: \(\int \frac{2zdz}{\sqrt[3]{z^2+1}}\)
The solution of the differential equation dydx=1+x+y+xy is