wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: (cotx+tanx)dx.

Open in App
Solution

Let I=(cotx+tanx)dx

1+tanxtanxdx
Put tanx=z2sec2xdx=2zdz

dx=2zdz1+z4
I=1+z2z.2zdz1+z4=2z2+1z4+1dz
=21+1z2z2+1z2dz
=21+1z2(z1z)2+2dz

Put z1z=u

(1+1z2)dz=du
I=2duu2+(2)2
I=2.12tan1(u2)+C=2tan1⎜ ⎜ ⎜z1z2⎟ ⎟ ⎟+C
=2tan1⎜ ⎜ ⎜ ⎜tanx1tanx2⎟ ⎟ ⎟ ⎟+C
=2tan1(tanx12tanx)+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 4
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon