I=∫√1−√x1+√xdx
Let √x=cost⇒x=cos2t⇒dx=−2cost sintdt
I=∫√1−cost1+cost(−2sintcost)dt
=∫√2sin2t/22cos2t/2(−2sintcost)dt
=∫sint/2cost/2(−2×2sint/2cos1/2)costdt
=−4∫sin2t/2costtdt
=−4∫(1−cost)2costdt
=−4∫cost2dt+4∫cos2t2dt
=−2sint+2∫(1−cost)2dt+c
=−2sint+t+sint2+c
=−2√1+−cos2t+t+sintcost+c
=−2√1−cos2t+t+√1−cos2tcost+c
Replacing cos t = √x
I=−2√1−x+cos−1√x+√x√1−x+c