The correct option is A −x2cosx+2(xsinx+cosx)
Given, ∫x2sinx dx
Using Integration by parts method we have,
∫x2sinx dx=x2∫sinx dx−∫dx2dx(∫sinx dx) dx
⇒ −x2cosx+2∫xcosx dx
⇒ −x2cosx+2[x∫cosx dx−∫dxdx∫(cosx dx)dx]
⇒ −x2cosx+2(xsinx−∫sinx dx)
⇒ −x2cosx+2(xsinx+cosx)