∫(x3−1)13x5dx
=∫(x3−1)13x5x2dx
Putting x3−1=t
3x2dx=dt ⇒x2dx=dt3
=13∫t13(t+1)dt
=13∫⎛⎜⎝t43+t13⎞⎟⎠dt
=13⎡⎢⎣37t73+34t43⎤⎥⎦+c
=17(x3−1)73+14(x3−1)43+c