Evaluate∫tan4xdx
∫tan4xd=∫tan2xtan2xdx
=∫(sec2x–1)tan2xdx
=∫(sec2xtan2x–tan2x)dx
=∫sec2xtan2xdx–∫tan2xdx
=∫sec2xtan2xdx–∫(sec2x–1)dx
=∫sec2xtan2xdx–∫sec2xdx+∫1dx
Put tanx=t
Differentiating both the sides, we get
sec2xdx=dt [d(tanx)dx=sec2x]
⇒∫sec2xtan2xdx–∫sec2xdx+∫1dx=∫t2dt–∫dt+x
=t33–t+x+ca
=13(tan3x)–tanx+x+c
Hence, the required answer is 13(tan3x)–tanx+x+c .