We know, for any k<n ,Ck+1Ck
=n!(n−k)!k!(k+1)!(n−k−1)!n!
=(n−k)(n−k−1)!k!(k+1)k!(n−k−1)!=n−kk+1
Now, Ck+Ck+1Ck=1+Ck+1Ck=1+n−kk+1=n−k+k+1k+1=n+1k+1
Then, (C0+C1C0)(C1+C2C1).....(Cn+CnCn−1)
=n+10+1.n+11+1.....n+1(n−1)+1=(n+1)n1.2......n=(n+1)nn!
(C0+C1C0)(C1+C2C1)....(Cn−1+CnCn−1)=(n+1)nn!