Evaluate: limx→ 0cos2x−1cosx−1
We have limx→ 0cos2x−1cosx−1
At x=0, the value of the given function takes the form 00
Now,
=limx→ 0cos2x−1cosx−1
=limx→ 01−2sin2x−11−2sin2x2−1 { cos 2x=1−2sin2x}
=limx→ 0sin2xsin2(x2)
=limx→ 0(sinx2x)× x2⎛⎝sin(x2)(x2)⎞⎠2×x24
=4limx→ 0(sinx)2xlimx→ 0⎛⎝sin(x2)(x2)⎞⎠2 {limx→ 0sinxx=1}
=4×11=4