Evaluate limx→ 0sinaxbx
We have, limx→ 0sinaxbx
At x-0, the value of the given function takes the form 00
Now, limx→ 0sinaxbx
Multiplying ax in both numerator and denominator
limx→ 0sinaxax×axbx
limx→ 0(sinaxax)×(axbx)
=(ab)limx→ 0(sinaxax) [x→ 0⇒ ax→ 0]
=ab×1{limx→ 0sinxx=1}
=ab
Answer option C is correct