Evaluate:
limn→∞1.2+2.3+3.4+...+n(n+1)n3
limn→∞1.2+2.3+3.4+...+n(n+1)n3
=limn→∞∑nk=1k(k+1)n3
=limn→∞∑nk=1k2+∑nk=1kn3
=limn→∞n(n+1)(2n+1)6+n(n+1)2n3
=limn→∞n(n+1)(2n+1+3)6n3
=limn→∞2n(n+1)(n+2)6n3
=13limn→∞(1+1n)(1+2n) as x→∞,1x→0
=13(1+0)×(1+0)
=13