wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate : limn14+24+34+....+n4n5limn13+23....+n3n5

Open in App
Solution

Consider the identity

(k+1)5k5=5k4+10k3+10k2+5k+1 ....(1)

Putting k=1,2,3,...,n in (1) and then adding the equations, we have

(n+1)51=5nk=1k4+10nk=1k3+10nk=1k2+5nk=1k+nk=11

n5+5n4+10n3+10n2+5n=5nk=1k4+10n2(n+1)24+10(n+1)(2n+1)6+5n(n+1)2+n

5nk=1k4=n5+5n4+10n3+10n2+4n5n2(n+1)25n(n+1)(2n+1)35n(n+1)2

5nk=1k4=n5+5n42+5n33n6

This expression on further simplification gives

nk=1k4=n(n+1)(2n+1)(3n2+3n1)30

limn14+24+34+....+n4n5limn13+23....+n3n5

=limnn(n+1)(2n+1)(3n2+3n1)30limnn2(n+1)24n5

=130limn(1+1n)(1+2n)(3+3n1n2)14limn1n(1+1n)2

=130×(1+0)×(2+0)×(3+00)14×0 (limn1n=limn1n2=...=0)

=130×60


flag
Suggest Corrections
thumbs-up
5
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
L'hospitals Rule
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon