Evaluate : limn→∞14+24+34+....+n4n5−limn→∞13+23....+n3n5
Consider the identity
(k+1)5−k5=5k4+10k3+10k2+5k+1 ....(1)
Putting k=1,2,3,...,n in (1) and then adding the equations, we have
(n+1)5−1=5∑nk=1k4+10∑nk=1k3+10∑nk=1k2+5∑nk=1k+∑nk=11
⇒n5+5n4+10n3+10n2+5n=5∑nk=1k4+10n2(n+1)24+10(n+1)(2n+1)6+5n(n+1)2+n
⇒5∑nk=1k4=n5+5n4+10n3+10n2+4n−5n2(n+1)2−5n(n+1)(2n+1)3−5n(n+1)2
⇒5∑nk=1k4=n5+5n42+5n33−n6
This expression on further simplification gives
∑nk=1k4=n(n+1)(2n+1)(3n2+3n−1)30
∴limn→∞14+24+34+....+n4n5−limn→∞13+23....+n3n5
=limn→∞n(n+1)(2n+1)(3n2+3n−1)30−limn→∞n2(n+1)24n5
=130limn→∞(1+1n)(1+2n)(3+3n−1n2)−14limn→∞1n(1+1n)2
=130×(1+0)×(2+0)×(3+0−0)−14×0 (limn→∞1n=limn→∞1n2=...=0)
=130×6−0