wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate:limx0cos(sinx)cosxx4

Open in App
Solution

limxocos(sinx)cosxx4
Using L Hospital rule
limxoddxsoc(sinx)cosxddx(x4)limxosin(sinx)cosx+sinx4x3
again using L Hospital
limx0+sinxsin(sinx)cos2xcos(sinx)+cosx12x2
Using L Hospital rule
limx0cosx.sin(sinx)+sinx.cosxcos(sinx)sin2xcos(sinx)sinx+cos3xsin(sinx)24x
limx0cos[1+cos2x]sin(sinx)sinxcosxcos(sinx)sinx24x
again using L Hospital
limx0[sinx3cos2xsinx]Sin(sinx)+cos2x[1+cos2x]cos(sinx)cosxos2xcos(sinx)+sin2xcosxsin(sinx)24
applying limit

[00]0+211+024=0

1190002_1366935_ans_9199985122bf473fb105c864105ed339.JPG

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Solving Trigonometric Equations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon