wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: limxπ2tan2xxπ2

Open in App
Solution

limxπ2⎜ ⎜tan(2x)xπ2⎟ ⎟
Let xπ2=y
limy0⎜ ⎜ ⎜tan2(y+π2)y⎟ ⎟ ⎟=limy0(tan2yy)[tan2(y+π2)=tan2y]
=2limy0(sin2y2y.1cos2y)[sinxx=1;cos0=1]=2×1×1=2
Method 2:
limxπ2⎜ ⎜tan(2x)xπ2⎟ ⎟=limxπ2(sec2(2x)1).2
=limxπ2(2.sec2(2x))=2sec2(2×π2)=2sec2(π)=2(1)2=2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Basic Inverse Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon