Evaluate: limx→π6√3sinx−cosxx−π6
=limx→π62[cosπ6sinx−sinπ6.cosx]x−π6
=limx→π62sin(x−π6)(x−π6) (∵sin(A−B)=sinAcosB–cosAsinB) Put x−π6=y So, when x→π6⇒y→0 =limy→02×sinyy =2 [∵limx→0sinxx=1]
The general value of x satisfying the equation √3 sin x+cos x=√3 is given by
Evaluate: limx→π4sinx−cosxx−π4