We need to find value of limit limx→∞2x2−3x−57x3−8x−4
=limx→∞2−3x−5x27x−8x2−4x3=x→∞⇒1x→0,1x2→0,1x3→0=limx→∞2−0−07x−0−0=27limx→∞1x=27×0=0
What must be subtracted from 4x3−3x+5 to get 2x2−3x3+5x−2 ?
Evaluate limx→2{(x2−4)√3x−2−√x+2}
find the value of limx→∞2x2−3x+117x3+8x2+15x+6