limx→π2tan2xx−π2
let y=x−π2, when x→π2
y→π2−π2=0
so, y→0
Now
limy→0(tan2(π2+y)y)
⇒limy→0(tan(π+2y)y)=limy→0(tan2yy)
⇒limy→0(1y.sin2ycos2y)=limy→0(sin2yy.1cos2y)
=limy→0(sin2yy)×limy→0(1cos2y)
=limy→0(sin2yy×2y2y)×limy→0(1cos2y)
=limy→0(sin2yy×2y2y)×limy→0(1cos2y)
=2limy→0(sin2y2y)×limy→0(1cos2y)
⇒2×1.1cos(0)=2cos0=21=2
∴limx→π2tan2xx−π2=2