wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: limx0eαxeβxsinαxsinβx

Open in App
Solution

limx0eαxeβxsinαxsinβx
=limx0eαx(1eβxαx)2cos(αx+βx2)sin(αxβx2) .........(1) using transformation angle formula sinCsinD=2cos(C+D2)sin(CD2)
Using the formulae, limx0ex1x=1
limx0cosθ=1 and limθ0sinθθ=1
we evaluate the above expression as
limx0eαx=1
limx0(1e(βα)x)=limx0(1e(βα)x)(βα)x×(βα)x=1×limx0(βα)x
limx0cos(α+β2)x=1
limx0sin(αβ2)x=limx0sin(αβ2)x(αβ2)x×(αβ2)x=limx0(αβ2)x
Substituting the above in (1) we get
=1×limx0(βα)x2×1×limx0(αβ2)x the term x gets cancelled in both the numerator and the denominator
=β+ααβ=1



flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Introduction to Limits
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon