wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate: limn14+24+34+...+n4n5-limn13+23+...+n3n5

Open in App
Solution

Consider the identity

k+15-k5=5k4+10k3+10k2+5k+1 .....(1)

Putting k = 1, 2, 3,..., n in (1) and then adding the equations, we have

n+15-1=5k=1nk4+10k=1nk3+10k=1nk2+5k=1nk+k=1n1n5+5n4+10n3+10n2+5n=5k=1nk4+10n2n+124+10nn+12n+16+5nn+12+n5k=1nk4=n5+5n4+10n3+10n2+4n-5n2n+122-5nn+12n+13-5nn+125k=1nk4=n5+5n42+5n33-n6

This expression on further simplification gives

k=1nk4=nn+12n+13n2+3n-130


limn14+24+34+...+n4n5-limn13+23+...+n3n5=limnnn+12n+13n2+3n-130n5-limnn2n+124n5=130limn1+1n2+1n3+3n-1n2-14limn1n1+1n2=130×1+0×2+0×3+0-0-14×0 limn1n=limn1n2=...=0
=130×6-0=15

flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
(x+a)(x+b)
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon