The correct option is
D does not exist
limx→π2tanx
RHL=limh→0+tan(π2+h)
=limh→0+−coth
=limh→0+−cothh×h=−1×0=0
LHL=limh→0−tan(π2−h)
=limh→0−coth
=limh→0−cothh×h=1×0=0
Thus,LHL=RHL
Left hand limit = right hand limit =f(a)
if the above condition is satisfied then limit exists.
f(π2)=limx→π2tanx=tanπ2=∞
Left hand limit = right hand limit ≠f(a)
Hence the limit does not exists.