Let
I=2∫−2x21+5xdx .........(1)
By using property,
b∫af(x)dx=b∫af(a+b−x)dx, we will get
I=2∫−2(−2+2−x)21+5(−2+2−x)dx
I=2∫−2x21+5−xdx=2∫−2x21+15xdx
I=2∫−25x.x25x+1dx .................(2)
Adding (1) and (2), we will get,
2I=2∫−2[x21+5x+5x.x21+5x]dx
2I=2∫−2x2(1+5x)dx(1+5x)
2I=2∫−2x2 dx=22∫0x2dx
[∵f(x)=x2 is an even function]
⇒I=12×2[x33]20=12×2×(2)33
Hence,
I=83