∫30x√x2+16dxLet
x2+16=t{when x=0⇒t=16when x=3⇒t=25
Differentiating above equation w.r.t. x, we have
2xdx=dt
xdx=dt2
Now, the integration will be in the form-
∫2516dt2√t
=12∫t−12dt
=12[√t]2516
=12[√25−√16]
=12(5−4)=12
Hence the value of ∫30x√x2+16dx is 12.