We have,
limx→1(21−x2+1x−1)
Then,
limx→1(21−x2+1x−1)
=limx→1(2(x−1)+1(1−x2)(1−x2)(x−1))
=limx→1(2x−2+1−x2(1−x2)(x−1))
=limx→1(−x2+2x−1(1−x2)(x−1))
=limx→1(−(x2−2x+1)(1−x2)(x−1))
=limx→1(−(x−1)2(1−x2)(x−1))
=limx→1(−(x−1)2(1−x)(1+x)(x−1))
=limx→1(−(x−1)2−(x−1)(1+x)(x−1))
=limx→1(1(1+x))
=11+1
=12
Hence, this is the answer.