The correct option is
D log(cotθ2)Given that,
sech−1(sinθ)
We know that
sech−1x=log(1x+√1x2−1)
then,
sech−1(sinθ)=log⎛⎝1sinθ+√1−sin2θsin2θ⎞⎠
=log(1sinθ+cosθsinθ)
=log(1+cosθsinθ) ∵ cosθ=2cos2θ2−1
=log(1+2cos2θ2−1)2sinθ2cosθ2
=log⎛⎜
⎜
⎜⎝2cos2θ22sinθ2cosθ2⎞⎟
⎟
⎟⎠
=log⎛⎜
⎜
⎜⎝cosθ2sinθ2⎞⎟
⎟
⎟⎠
=log(cotθ2)