1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Trigonometric Ratios of Multiples of an Angle
Evaluate sin ...
Question
Evaluate sin
tan
-
1
3
4
.
Open in App
Solution
We know that
tan
-
1
x
=
sin
-
1
x
1
+
x
2
∴
sin
tan
-
1
3
4
=
sin
sin
-
1
3
4
1
+
9
16
=
sin
sin
-
1
3
4
5
4
=
sin
sin
-
1
3
5
=
3
5
∵
sin
sin
-
1
x
=
x
​∴
sin
tan
-
1
3
4
=
3
5
Suggest Corrections
0
Similar questions
Q.
Evaluate the following:
(i)
sin
-
1
sin
5
π
6
(ii)
cos
-
1
cos
-
π
4
(iii)
tan
-
1
tan
3
π
4
(iv)
sin
-
1
(
sin
2
)
(v)
sin
π
3
-
sin
-
1
-
3
2
(vi)
cos
cos
-
1
-
3
2
+
π
4
(vii)
cos
tan
-
1
3
4
(viii)
cos
-
1
cos
5
π
4
(ix)
cos
-
1
cos
4
π
3
(x)
tan
-
1
tan
2
π
3
(xi)
cos
-
1
cos
13
π
6
(xii)
tan
-
1
tan
7
π
6
Q.
Evaluate:-
tan
−
1
2
{
cos
2
[
sin
−
1
(
1
2
)
]
}
Q.
Prove
tan
−
1
1
2
+
tan
−
1
2
11
=
tan
−
1
3
4
Q.
Evaluate
∫
(
s
i
n
x
+
t
a
n
x
)
d
x
Q.
Evaluate:
sin
60
∘
tan
30
∘
View More
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
Related Videos
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Explore more
Trigonometric Ratios of Multiples of an Angle
Standard XII Mathematics
Join BYJU'S Learning Program
Grade/Exam
1st Grade
2nd Grade
3rd Grade
4th Grade
5th Grade
6th grade
7th grade
8th Grade
9th Grade
10th Grade
11th Grade
12th Grade
Submit
AI Tutor
Textbooks
Question Papers
Install app