On prime factorising, we get,
216=6×6×6–––––––––– =63.
343=7×7×7–––––––––– =73.
Then, −343 =(−7)3.
Therefore, value of 3√216×(−343) is:
3√63×(−7)3=6×(−7)=−42.
Therefore, option B is correct.
Evaluate : (i) 23−45(ii) −49−2−3(iii) −1−49(iv) −27−3−14(v) −518−−29(vi) 521−−1342